

Welcome to CN24’s documentation!

Contents:

	Introduction

	CN24 as a Library

	Networks
	Hyperparameters

	Data Input

	Layer Types
	Convolution Layer

	Maximum Pooling Layer

	CN24 Shell
	Usage

	Commands
	Networks

	Models

	Datasets

	Datasets
	Hierarchy

	Data Format
	Detection

	Classification

	Binary Segmentation

To get started,…

What is CN24?

What is it not?

Introduction

Welcome to CN24!

CN24 as a Library

Networks

Network architectures in CN24 are defined using a JSON file.
The basic layout looks like the following example:

{
 "hyperparameters": { /* See section on hyperparameters */ },
 "net": {
 "task": "detection",
 "input": "conv1",
 "output": "fc7",
 "nodes": { /* See section on layer types */ },
 "error_layer": "square"
 },
 "data_input": { /* See section on data input */ }
}

Hyperparameters

This section controls the optimization process. The following
hyperparameters can (and should) be set:

	batch_size_parallel: Sets the fourth dimension of the
network’s input. This directly affects VRAM usage if you
are using a GPU.

	batch_size_sequential: If you want to use a larger minibatch size
than your memory would allow using batch_size_parallel,
you can change batch_size_sequential. The effective minibatch size
is the product of both.

	epoch_iterations: The number of iterations (gradient steps) per epoch.
This is an
arbitrary setting. If it is not set, an epoch will have one iteration
per training sample.

	optimization_method: Choose the optimizer you want to use for your
network. Currently, the following optimization methods are supported:

	adam: The Adam [https://arxiv.org/abs/1412.6980] optimizer.
It can be configured using the following hyperparameter keys:

	ad_step_size, ad_beta1 and ad_beta2: Matches
the \(\alpha,\beta_1\) and \(\beta_2\) parameters from
the Adam paper.

	ad_epsilon: Mathces the \(\epsilon\) parameter from the
Adam paper.

	ad_sqrt_step_size: If set to 1, the effective step size will
be \(\alpha\) divided by the square root of the number of iterations
already processed.

	gd: Standard stochastic gradient descent with momentum.
Using the number of iterations \(t\), the effective learning
rate is \(\eta (1 + \gamma t)^q\). SGD
supports the following hyperparameter keys:

	learning_rate: Sets the learning rate \(\eta\) for gradient descent.

	learning_rate_exponent: Sets the exponent \(q\) for the
effective learning rate.

	learning_rate_gamma: Sets the coefficient \(\gamma\) for the
effective learning rate.

	gd_momentum: Sets the momentum coefficient.

	l1: The coefficient for \(L_1\) regularization of weights.

	l2: The coefficient for \(L_2\) regularization of weights.

An example block might look like this:

"hyperparameters": {
 "testing_ratio": 1,
 "batch_size_parallel": 2,
 "batch_size_sequential": 32,
 "epoch_iterations": 100,
 "l1": 0,
 "l2": 0.0005,
 "optimization_method": "adam",
 "ad_step_size": 0.000001
}

Data Input

This section specifies the input size into the network. It is
required because the node list does not contain any information
on input or output shapes of the nodes.

Layer Types

Convolution Layer

Maximum Pooling Layer

CN24 Shell

The CN24 shell should cover most experimental settings for supervised learning.
To get an overview of all possible commands, enter the help command:

./cn24-shell
 [Version number etc...]
cn24> help

Usage

cn24-shell [-v] [-q] [<SCRIPT>]

	-v, --verbose: Verbose mode, extra information useful
for debugging.

	-q, --quiet: Quiet mode, suppresses unimportant output, useful
for scripting.

	<SCRIPT>: Script file, runs the specified script at startup
commands.

Commands

The following section gives an overview of important cn24-shell commands,
grouped by topics.

Networks

Models

Datasets

Datasets

Hierarchy

Data in CN24 is managed in a three-level hierachy:

	Areas designate the data’s experimental purpose.
There are 3 default areas: training, staging and testing.

	Bundles are the default unit of dataset serialization.
They can be moved freely between areas. Bundles in the
training Area can be assigned a weight that influences the
likelihood of selecting training samples from them.

	Segments contain the samples themselves. They can be moved
freely between Bundles. They exist to group samples, e.g.,
training and validation samples or samples of different classes.

CN24 will create two empty default Bundles: Default_Training and
Default_Testing

 Area Bundle Segment Samples
Training
 |..............Default_Training 95
 |..................Weight: 1
 |.......................UM_road 95

 Staging
 |.............KITTIRoadTraining 193
 |.......................UM_lane 95
 |.......................UU_road 98

 Testing
 |...............Default_Testing 96
 |......................UMM_road 96

Data Format

Data is provided to CN24 in the form of serialized Bundles.
The serialization method of choice is JSON, provided by nlohnmann’s JSON library [https://github.com/nlohmann/json].

The Bundle format is best explained by an example:

{
 "name": "SampleBundle",
 "segments:" [
 {
 "name": "SampleSegmentA",
 "samples": []
 },
 {
 "name": "SampleSegmentB",
 "samples": []
 }
]
}

The samples themselves are JSON objects as well. Their exact
schema depends on the task.

Detection

CN24 supports detection using the YOLO method [https://arxiv.org/abs/1506.02640].
Samples need to specify the following:

	image_filename: Input image file

	boxes: JSON array of bounding boxes

Bounding boxes have the following properties:

	x, y: Coordinates of the center of the bounding box (pixels)

	w, h: Width and height of the bounding box (pixels)

	class: Class of the object inside the bounding box

Optionally, you can specificy these:

	difficult: If set to 1, the box is ignored during testing

	dont_scale: Instead of pixels, the coordinates and dimensions
of the box are specified as normalized fractions of the image dimensions

The following is an
example from the PASCAL VOC dataset:

{
 "boxes": [
 {
 "class": "bird",
 "difficult": 0,
 "h": 286,
 "w": 156,
 "x": 338,
 "y": 190
 }
],
 "image_filename": "2011_003213.jpg"
}

Classification

Binary Segmentation

Samples for binary segmentation consist of two image files
with equal dimensions. One is the actual input image and the
other the label image. At the moment, only binary segmentation
is supported. Grayscale label images are preferred. However,
CN24 will also accept RGB images as labels. In this case, the
value of the third channel will be used as a label.

The following properties need to be specified:

	image_filename: Input image file

	label_filename: Label file

Optionally, you can supply a value for localized_error_function.
Currently, the only supported values are default and kitti.

The following is an example from the KITTI-Vision Road Dataset:

{
 "label_filename": "gt_image_2/umm_road_000049.png",
 "localized_error_function": "kitti",
 "image_filename": "image_2/umm_000049.png"
}

Index

Data Format

Data is provided to CN24 in the form of serialized Bundles.
The serialization method of choice is JSON, provided by nlohnmann’s JSON library [https://github.com/nlohmann/json].

The Bundle format is best explained by an example:

{
 "name": "SampleBundle",
 "segments:" [
 {
 "name": "SampleSegmentA",
 "samples": []
 },
 {
 "name": "SampleSegmentB",
 "samples": []
 }
]
}

The samples themselves are JSON objects as well. Their exact
schema depends on the task.

Detection

CN24 supports detection using the YOLO method [https://arxiv.org/abs/1506.02640].
Samples need to specify the following:

	image_filename: Input image file

	boxes: JSON array of bounding boxes

Bounding boxes have the following properties:

	x, y: Coordinates of the center of the bounding box (pixels)

	w, h: Width and height of the bounding box (pixels)

	class: Class of the object inside the bounding box

Optionally, you can specificy these:

	difficult: If set to 1, the box is ignored during testing

	dont_scale: Instead of pixels, the coordinates and dimensions
of the box are specified as normalized fractions of the image dimensions

The following is an
example from the PASCAL VOC dataset:

{
 "boxes": [
 {
 "class": "bird",
 "difficult": 0,
 "h": 286,
 "w": 156,
 "x": 338,
 "y": 190
 }
],
 "image_filename": "2011_003213.jpg"
}

Classification

Binary Segmentation

Samples for binary segmentation consist of two image files
with equal dimensions. One is the actual input image and the
other the label image. At the moment, only binary segmentation
is supported. Grayscale label images are preferred. However,
CN24 will also accept RGB images as labels. In this case, the
value of the third channel will be used as a label.

The following properties need to be specified:

	image_filename: Input image file

	label_filename: Label file

Optionally, you can supply a value for localized_error_function.
Currently, the only supported values are default and kitti.

The following is an example from the KITTI-Vision Road Dataset:

{
 "label_filename": "gt_image_2/umm_road_000049.png",
 "localized_error_function": "kitti",
 "image_filename": "image_2/umm_000049.png"
}

Hierarchy

Data in CN24 is managed in a three-level hierachy:

	Areas designate the data’s experimental purpose.
There are 3 default areas: training, staging and testing.

	Bundles are the default unit of dataset serialization.
They can be moved freely between areas. Bundles in the
training Area can be assigned a weight that influences the
likelihood of selecting training samples from them.

	Segments contain the samples themselves. They can be moved
freely between Bundles. They exist to group samples, e.g.,
training and validation samples or samples of different classes.

CN24 will create two empty default Bundles: Default_Training and
Default_Testing

 Area Bundle Segment Samples
Training
 |..............Default_Training 95
 |..................Weight: 1
 |.......................UM_road 95

 Staging
 |.............KITTIRoadTraining 193
 |.......................UM_lane 95
 |.......................UU_road 98

 Testing
 |...............Default_Testing 96
 |......................UMM_road 96

Layer Types

Convolution Layer

Maximum Pooling Layer

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Welcome to CN24’s documentation!

 		
 Introduction

 		
 CN24 as a Library

 		
 Networks

 		
 Hyperparameters

 		
 Data Input

 		
 Layer Types

 		
 Convolution Layer

 		
 Maximum Pooling Layer

 		
 CN24 Shell

 		
 Usage

 		
 Commands

 		
 Networks

 		
 Models

 		
 Datasets

 		
 Datasets

 		
 Hierarchy

 		
 Data Format

 		
 Detection

 		
 Classification

 		
 Binary Segmentation

_static/up.png

_static/up-pressed.png

